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Justification of Vdovichenko's method for the Ising model on a 
two-dimensional lattice 

T Morita 
Department of Engineering Science, Faculty of Engineering Tohoku University, Sendai 
980, Japan 

Received 29 August 1985 

Abstract. A detailed proof is presented of Vdovichenko's method giving an exact expression 
of the free energy of the Ising model on a two-dimensional lattice. 

1. Introduction 

Kac and Ward (1952) suggested that the exact expression of the free energy of the 
Ising model on the square lattice, first given by Onsager (1944), is obtained with the 
aid of a determinant of a matrix inducing the random walk on the lattice. Vdovichenko 
(1965) gave a method showing that the exact analytic expressions of the free energy 
obtained in that method are exact for the finite and infinite Ising models. His argument 
is easy to apply for systems on a two-dimensional lattice even with a large unit cell, 
and it was taken up by a number of authors (Vaks et a1 1966, Bryksin et a1 1980, 
Kitatani et a1 1985, Morita 1986). However, it is not easy to see that the method should 
give exact results. In particular, in the part of his arguments showing cancellations of 
some diagrams, only simple examples were worked out and their validity for a general 
case is far from obvious. No discussion was given of the convergence of some limits. 
Landau and Lifshitz (1968) gave an account of the method in a textbook, but it simply 
follows the original. The purpose of the present paper is to give a detailed proof 
showing that his results are exact for finite and infinite systems. 

We consider a finite lattice of N lattice sites on a two-dimensional lattice. There 
is a spin on each lattice site, and the exchange integral between the j th  and kth sites 
is denoted by &. It is non-zero only when they are nearest neighbours of each other. 

The partition function 2 of the system is expressed as follows: 

where the products are over all the pairs of nearest-neighbour lattice sites on the lattice 
and sj is the spin variable for the j th  site. /3 = l /kBT, kB is the Boltzmann constant 
and T is the temperature. Taking the trace after expanding the last product, we have 
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where 
Z,( t )  = 1 +{the sum of all those single-bonded diagrams on the 

lattice, that each lattice site is connected to none or an even 

number of bonds connecting nearest-neighbour sites}. (3) 

A diagram in (3) denotes the product of the factors tanh( / 3Jk) t  for ( j ,  k) bonds in it. 
A parameter t is introduced for the convenience of the proof. An example of the 
diagrams is shown in figure l (a ) .  

We follow Vdovichenko (1965) and first show that the sum in (3) is expressed in 
terms of a sum of connected diagrams in 0 2, and then this sum in terms of a determinant 
of a matrix inducing random walks on the lattice in § 3. In § 4, we assume a translational 
symmetry and obtain the result in terms of a product of small determinants, and then 
we can take the thermodynamic limit. Section 5 contains the conclusions. The conver- 
gence of a series is proved in appendix 1 and the eigenvalues of a matrix are estimated 
in appendix 2. x 

( a )  ( b l  

Figure 1. ( a )  A diagram in the sum of (3) for the system on the triangular lattice. ( b )  The 
corresponding term in (4). 

2. Expression in terms of connected diagrams 

In this section, a diagram is either a loop or a product of loops on a finite lattice. A 
loop here is via lattice sites and bonds, each connecting a pair of nearest-neighbour 
lattice sites on the lattice, where the same site or the same pair of sites may be passed 
an arbitrary number of times. We denote the total number of nearest-neighbour lattice 
sites on the lattice by M. For a diagram, we shall denote the total number of bonds 
between the ith pair of nearest-neighbour lattice sites by mi. The diagram is said to 
be characterised by the set {mi} of M values m, , m2, . . . , mM. A diagram characterised 
by the set { m i }  is said to be labelled when the mi bonds are labelled by 1, 2,. . . , mi 
for each i for which mi 3 2. Let us label all the bonds of an unlabelled diagram in 
I-I 2, mi ! ways. If there appear ND distinctive labelled diagrams, the number I I i  mi !/ N,, 
is said to be the symmetry number of the unlabelled diagram. The symmetry number 
for a labelled diagram is one. A diagram in this section represents a product of three 
factors: 
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(i)  3-1 or -1 according as the parity of the number of crossings of lines is even or 

(ii) the product of (xit)"l for ith pair of nearest neighbours, where xi  = tanh( &) 

(iii) the inverse of the symmetry number. 
Here we shall express Z, ( t )  given by (3) in terms of loops: 

odd; 

if the ith pair is between j th  and kth sites; 

where 

Sl{mi} = {a product of loops, if such is obtained by drawing a bond 

between the ith pair if mi = 1, and then connecting them at the edge 

sites pairwise, in such a way that no crossing occurs, 

and zero if otherwise}. ( 5 )  

In fact, if we connect the bonds at a site next with next, we get such a product from 
each diagram in the sum of (3); see figure l (6) .  

The purpose of this section is to show that Zl( t )  is equal to Z2( t )  which is defined by 

(6) 
In order to confirm this, the exponential is expanded. We denote the sum of all the 
terms characterised by the same set of { m i }  in this expansion by S2{mi } ,  and put 

Z2( t )  = exp{the sum of all the loops}. 

S,{ mi }  = {the sum of all the distinct unlabelled diagrams consisting of 

Note here that the factorials which occur in the expansion are included in the symmetry 
number for diagrams. We now show that this sum is zero if there is an i for which mi 
is two or more, and that it is equal to one diagram S , { m i }  if all mi are zero or one. 
Vdovichenko (1965) and Landau and Lifshitz (1968) gave some arguments to suggest 
these, which are elaborated here. 

When we consider a sum of unlabelled diagrams, which represents a factor divided 
by the symmetry number, it is convenient to express it in the form of a sum of labelled 
diagrams. If an unlabelled diagram in (8) is characterised by { m i }  and its symmetry 
number is SN, its contribution is 

loops, characterised by the set { m i } } .  (8) 

which is equal to the sum of all the nimi! / sN distinct labelled diagrams obtained from 
it, divided by II,m,!. Hence (8) is rewritten as follows: 

S2{ mi}  = - {the sum of all the distinct labelled diagrams of loops, 
1 

Himi!  
characterised by the set { m i } } .  (9) 

We next note that we can obtain all the diagrams in the sum of (9) if we write mi 
labelled bonds between the ith pair of nearest neighbours, and connect the edges of 
the bonds at each site in all the possible ways; see figure 2. 
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Figure 2. A labelled diagram on the square lattice. m, = 2 for two i, m, = 1 for twelve i 
and m, = 0 for all other I .  The bonds for m, = 2 are labelled by 1 or 2, and all the summands 
for this {mt} are obtained by connecting the edges of the bonds at each site painvise in 
such a way that the bonds for the same pair of sites must not be connected at an edge 
with each other. 

11 12 11 12 

Figure 3. There are eight bonds meeting at a site. The two diagrams in which the connections 
of the two right bonds labelled by 1 and 2 are exchanged cancel with each other. 

We first consider a case where m, for a pair i of nearest neighbours is two or more; 
see figure 3. Let us pay attention to a site which is an edge of the ith pair. The edges 
of the first two of m, bonds, labelled by 1 and 2, for the ith pair must be connected 
with other edges of bonds entering the same site. For each of these connections there 
exists another connection in which the connections are exchanged. The exchange of 
these connections results in a change of parity of the number of crossings, and the 
contributions of two diagrams which are different only in these connections cancel 
with each other. Thus we have S2{ m,} = 0 if there exists a pair i of sites for which m, == 2. 

We now consider a case where m, is zero or one for all i. We pay attention to a site 
which connects four or more bonds. We assume that the number is 2m; an example 
of 2m = 6 is given in figure 4. We label them 1, 2 , .  . . ,2m, in such a way that 1 and 
2, 3 and 4, . . . , are connected at that site in the diagram SI{ m,} .  We then ask whether 
the bonds 1 and 2 in a diagram in S , { m , }  are connected at that site with each other. 
If not, there exists a diagram in which the connections of 1 and 2 are exchanged at 
the site. Their contributions cancel with each other. If 1 and 2 are connected, we ask 
whether 3 and 4 are connected. I f  not we conclude it cancels with another. If all the 
pairs 1 and 2, 3 and 4,. . . , are connected with each other, then we ask the same thing 
at another site. After we discard all the cancelled contributions, we are left with one 
diagram S , { m , }  in the sum S2{m,}  when m, = 0 or 1 for all i. Thus we confirm the 
desired equality S , { m , }  = S,{ m , } ,  and hence Z,( t )  = Z;( t ) .  
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3L 4 

( d l  (el 

Figure 4. ( a )  is left uncancelled. (b)  and ( c )  cancel with each other if the connections at 
the other sites are identical. (d )  and ( e )  cancel with each other. 

What remains to be shown is that the quantity Z,( t )  = Zi( t )  is equal to the limit 
Z 2 ( f ) ,  which is proven in appendix 1, for t with an absolute value less than 1/2M. 

3. Expression in terms of a determinant 

In the preceding section, diagrams are loops of bonds without direction, and their 
products. We now consider two directions for a bond connecting a pair of nearest- 
neighbour lattice sites. We call them steps. Since we distinguish them, we have 2 M  
kinds of steps. They are labelled by i and i' in this section. A random walk via these 
steps returning to the starting point is called a directed loop. The diagrams in the 
present section are directed loops and their products. Equation ( 6 )  now reads 

(10) 

We introduce a 2 M  x 2 M  matrix A which induces the random walks. The ( i ,  i ' )  

Z,( t)' = exp{the sum of all the directed loops}, 

since we have two loops which are different only in direction, in the present sum. 

element ai,i, of A is 

(11) 
if the step i can follow i' and l + i , i s l  < T, and ai,i,= 0 otherwise, where +i,ir is the angle 
of the direction of the step i relative to the direction of i ' ,  and S T and Oi, i ,  = 
e ~ p ( i 4 , ~ . / 2 ) ;  here the imaginary unit i must not be confused with the label of a step. 

Tr A" = {the sum of all the distinctive labelled directed loops of n steps, 

a . .  - x.0. ., 
1 , I ' -  I 1.1 

We now consider Tr A" which is expressed as follows: 

labelled by 1,2, .  . . , and n along the direction}. (12) 
When we label an unlabelled directed loop along the direction, we have n/(symmetry 
number) distinct ways, and hence we have 

1 
n 
- Tr A" = {the sum of all the unlabelled directed loops of n steps}. (13) 
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The contribution of a diagram in (12) is a product of two factors: 

crossings; 

See Kac and Ward (1952) and Vdovichenko (1965) for the fact (i’). For a diagram in 
(13), we have an additional factor: 

Compared with (i)  and (ii) for the contribution of the same diagram in (lo),  the sign 
is different in (i’) and the factor t is missing for each of n steps in (ii’). Hence we have 

(i‘) the product of ei,i. which gives rise to the factor (-l)‘+’, when there are r 

(ii’) the product of xi  for bonds. 

(iii) the inverse of the symmetry number. 

where Ak is the kth eigenvalue of the matrix A. In appendix 2, we show that ) h k l <  2 M  
for all k, so that the last summation is absolute convergent when I t [ <  1 / 2 M  and then 
the exchange of the two summations in the last term of the preceding equation is 
allowed. As a result, we get 

Z2(t)’=e . 
\ k=l 

1 - h k f )  = det(l - A t ) ,  
1 k=l 

where I is the unit matrix of order 2M. 
Since we have proved that Z,(t) =Z2(t) for It1 < 1/2M, we now have 

Z,( t)’ = det( I -At)  (15) 

for these t. Since both sides are polynomials of variable t of degree 2 M  or less and 
hence they are entire functions of t if we regard them as functions of a complex 
variable t, and they are equal to each other for a region It( < 1/2M, they are identical 
for all t values by the identity theorem (Titchmarsh 1968). 

4. Expression in terms of small determinants 

In the present section, we consider a system which consists of N‘ unit cells, and there 
are r / 2  pairs of nearest neighbours per unit cell, so that 2 M  = N‘z kinds of steps in 
the system. When the step i represents a p th  step for the j t h  unit cell, i 
by jp. The exchange integral between the two sites connected by the step jp  
by Jfi in this section. The matrix element t&kv  of I - A  is given by 

if jp = kv, $fi,ku = 1 

fip,ku = -tanh( &,) Orv  

if the step jp can follow kv and I $ p y I  < v, and it is 0 otherwise, where 
direction of the step jp relative to the direction of kv, and I $ w v l  s 7~ 

exp(i$,J2). 

is denoted 
is denoted 

(16) 

$ r u  is the 
and e*,,= 

The next step in Vdovichenko’s argument is to call attention to the fact that det(l - A )  
can be expressed as a product of small determinants, when we adopt a periodic 
boundary condition on the lattice. The representative position of the j t h  cell is denoted 
by Rj. We consider N’ wavevectors Q for which exp(iQ. R )  is periodic with respect 
to the representative position R of a unit cell. We introduce N’z x N‘z matrices W, 
Y‘ and T as follows. The (Qp, jp’) element of Y and the (kv, Qv’) element of 9’ are 
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respectively, and ? is given by a product of the matrices: 

?=Y(I -A)@. 

The (Qp,  Q ’ v )  element o f ?  is given by 

~ Q , Q , ~ , ~ ( Q )  

where 

i p v (  Q )  = fJp,ku exP[ i Q * (Rj - Rk)] 
j 

In the last term of (20), if there exist such a pair of j and k that the step j p  can 
follow kv, e:,= e,, and j and k are this pair, and if otherwise, 6:,=0. 

Now that the product Yq‘ is a unit matrix, we have 

det(l - A )  = det(i) .  (21) 

Since ? takes the form (19), det(?) is equal to the product of the small determinants 
of z x z matrices (ipV( Q)) for N‘ values of Q :  

det(l - A )  = n det( fWv( Q)). 
Q 

Now, using this result (22) in (2) and (15), we have 

1 N l 2  1 
- l n Z = y l n 2 + -  2 lncosh(PJ , )+-~lndet (~p , (Q)) .  (23) 
N’ N 2 p = l  2 N  Q 

In the second term on the right-hand side, we have a factor 4 since the summation is 
taken for steps and hence the same pair of lattice sites is covered twice. 

5. Conclusion 

Equation (23) is the desired result. The notation occurring in it is explained in P 4. 
In the preceding sections, (23) is shown to be exact for a finite Ising model on a 
two-dimensional lattice, when a periodic boundary condition is assumed. The thermo- 
dynamic limit N ‘ + m  in the van Hove sense changes the summation with respect 
to Q divided by N’ into an integral. 

The factor epY induces a factor -1 to each crossing of closed random walks. This 
results in the cancellation of unnecessary loops which appear because of the definition 
of determinant (Kac and Ward 1952, Vdovichenko 1965). Bryksin et a1 (1980) suggested 
the possibility of associating -1 with some of the successive pairs of steps, e.g. with 
the step of the right direction either followed by or preceded by a step in the downward 
direction, in the case of the square lattice. Then e,, is put equal to -1 for these steps 
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and 1 for the other steps. As a result, we can obtain an analytic expression of the free 
energy by calculating a number of determinants of elements 0, 1 or -1 (Morita 1986). 

Appendix 1. The convergence of (6) to (4) 

Equation ( 6 )  is written as 

and (4) is written as 

M 
1 +  bmtm. 

m = l  

(Al . l )  

(A1.2) 

The argument in 0 2 shows that, if we expand (Al . l )  in powers of t and compare with 
(A1.2), we obtain the equalities 

( m  = 1,2, .  . . , M ) ,  
( m  = M + 1 ,  M + 2 , .  . .), (A1.3) 

where the asterisk (*) indicates the restriction Xp=l knk = m for the summation. a, is 
estimated as 

Ian1 < M", (Al.4) 

considering that it i s  a sum of loops of n bonds on the lattice of M pairs of nearest 
neighbours, and that the absolute value of the factor, excluding t ,  for a bond is less 
than unity. 

For an integer K greater than M, we have 

M 

M 
= 1 fi exp(a,t")-1- bmtml 

I n = l  m = l  I 

(A1.5) 

where the dagger (t) denotes the restriction Xf=, knk = m for the summation. Here 
('91.3) and (A1.4) are used and the number ofthose ways of distributing m indistinguish- 
able objects for which nk boxes include k objects for k = 1, 2, . . . , and K, is overesti- 
mated by 2". If It1 < 1/2M, this quantity tends to zero as K +a. This shows that the 
limit (Al . l )  exists and is equal to (A1.2) if It1 < 1/2M. 

Appendix 2. Estimate of the eigenvalues of a matrix 

When (x,) is a normalised eigenvector of an n x n matrix ( a i j )  and A is the corresponding 
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eigenvalue 

i a U x j = A x i  
j = 1  

i = l , 2  , . . . ,  n, 

i x.x -I I = 1 .  
1 = 1  

Multiplying the first equation by Z, and summing with respect to i, we have 

If we regard the right-hand side as a scalar product of two vectors ( a e )  and (Rixj) of 
n2 elements, the Schwarz inequality gives us 

(A2.1) 

(A2.2) 

A in 0 3 is a 2M x 2M matrix of elements given by ( l l ) ,  so that n = 2M and aM = 1 
and the absolute value of an eigenvalue Ak of A is less than 2M. 

Note added in proof: The proofs in the text are performed for a system in a plane. We would get Onsager’s 
result if we could apply (23) to a system satisfying a periodic boundary condition in two directions, which 
is a system with nearest-neighbour interactions on a torus but not in a plane. We need some more arguments 
to complete the justification of Vdovichenko’s method. This will be taken up in a future paper. 
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